Cross-Resistance in and Chemical Control of Auxinic Herbicide-Resistant Yellow Starthistle (Centaurea solstitialis)1

2001 ◽  
Vol 15 (2) ◽  
pp. 293-299 ◽  
Author(s):  
TIMOTHY W. MILLER ◽  
SANDRA L. SHINN ◽  
DONALD C. THILL
2001 ◽  
Vol 20 (3) ◽  
pp. 279-286 ◽  
Author(s):  
Cynthia Talbott Roché ◽  
Bradley L Harmon ◽  
Linda M Wilson ◽  
Joseph P McCaffrey

Plant Disease ◽  
2006 ◽  
Vol 90 (4) ◽  
pp. 425-428 ◽  
Author(s):  
T. L. Widmer ◽  
F. Guermache

Yellow starthistle (Centaurea solstitialis) is an annual invasive weed in the United States with Mediterranean origins. The expense of chemical control and the vast area of invasion make this weed an appropriate target for classical biological control. Observations of a field site in southern France revealed small orange galls on the leaves of yellow starthistle seedlings caused by the fungus Synchytrium solstitiale. Inoculation of yellow starthistle seedlings with a suspension of zoospores released from infected tissue resulted in infection. Ten days after inoculation, typical orange galls appeared on the exposed tissue. Preliminary host range testing showed up to 100% infection of C. solstitialis seedlings from both France and the United States and infection of Carthamus tinctorius, Centaurea americana, C. diffusa, C. rothrockii, C. squarrosa, and Helianthus annuus seedlings. No symptoms were observed on seedlings of Centaurea calcitrapa, C. maculosa, C. sulfurea, Cirsium californica, C. occidentale, Cynera cardunculus, and Taraxacum officinale. Zoospores were released in a pH range between 4.45 and 8.25 and optimally at temperatures between 5 and 15°C. Infection of yellow starthistle seedlings occurred after a minimum 1-h exposure to a zoospore suspension at 20°C.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1288 ◽  
Author(s):  
Maor Matzrafi ◽  
Sarah Morran ◽  
Marie Jasieniuk

Repeated applications of herbicides at the labelled rates have often resulted in the selection and evolution of herbicide-resistant weeds capable of surviving the labelled and higher rates in subsequent generations. However, the evolutionary outcomes of recurrent herbicide selection at low rates are far less understood. In this study of a herbicide-susceptible population of Lolium perenne ssp. multiflorum, we assessed the potential for low glufosinate rates to select for reduced susceptibility to the herbicide, and cross-resistance to herbicides with other modes of action. Reduced susceptibility to glufosinate was detected in progeny in comparison with the parental population following three rounds of selection at low glufosinate rates. Differences were mainly observed at the 0.5X, 0.75X, and 1X rates. Comparing the parental susceptible population and progeny from the second and third selection cycle, the percentage of surviving plants increased to values of LD50 (1.31 and 1.16, respectively) and LD90 (1.36 and 1.26, respectively). When treated with three alternative herbicides (glyphosate, paraquat, and sethoxydim), no plants of either the parental or successive progeny populations survived treatment with 0.75X or higher rates of these herbicides. The results of this study provide clear evidence that reduced susceptibility to glufosinate can evolve in weed populations following repeated applications of glufosinate at low herbicide rates. However, the magnitude of increases in resistance levels over three generations of recurrent low-rate glufosinate selection observed is relatively low compared with higher levels of resistance observed in response to low-rate selection with other herbicides (three fold and more).


2020 ◽  
Author(s):  
Maor Matzrafi ◽  
Sarah Morran ◽  
Marie Jasieniuk

ABSTRACTRepeated applications of herbicides at the labelled rates have often resulted in the selection and evolution of herbicide-resistant weeds capable of surviving the labelled and higher rates in subsequent generations. However, the evolutionary outcomes of recurrent herbicide selection at low rates are far less understood. In this study of an herbicide-susceptible population of Lolium perenne ssp. multiflorum, we assessed the potential for low glufosinate rates to select for reduced susceptibility to the herbicide, and cross-resistance to herbicides with other modes of action. Reduced susceptibility to glufosinate was detected in progeny in comparison with the parental population following three rounds of selection at low glufosinate rates. Differences were mainly observed at the 0.5X, 0.75X, and 1X rates. Comparing the parental susceptible population and progeny from the second and third selection cycle, the percentage of surviving plants increased to values of LD50 (1.31 and 1.16, respectively) and LD90 (1.36 and 1.26, respectively). When treated with three alternative herbicides (glyphosate, paraquat, and sethoxydim), no plants of either the parental or successive progeny populations survived treatment with 0.75X or higher rates of these herbicides. The results of this study provide clear evidence that reduced susceptibility to glufosinate can evolve in weed populations following repeated applications of glufosinate at low herbicide rates. However, the magnitude of increases in resistance levels over three generations of recurrent low-rate glufosinate selection observed is relatively low compared with higher levels of resistance observed in response to low-rate selection with other herbicides (three fold and more).


Weed Science ◽  
2019 ◽  
Vol 67 (6) ◽  
pp. 605-612 ◽  
Author(s):  
Xiangying Liu ◽  
Shihai Xiang ◽  
Tao Zong ◽  
Guolan Ma ◽  
Lamei Wu ◽  
...  

AbstractThe widespread, rapid evolution of herbicide-resistant weeds is a serious and escalating agronomic problem worldwide. During China’s economic boom, the country became one of the most important herbicide producers and consumers in the world, and herbicide resistance has dramatically increased in the past decade and has become a serious threat to agriculture. Here, following an evidence-based PRISMA (preferred reporting items for systematic reviews and meta-analyses) approach, we carried out a systematic review to quantitatively assess herbicide resistance in China. Multiple weed species, including 26, 18, 11, 9, 5, 5, 4, and 3 species in rice (Oryza sativa L.), wheat (Triticum aestivum L.), soybean [Glycine max (L.) Merr.], corn (Zea mays L.), canola (Brassica napus L.), cotton (Gossypium hirsutum L.)., orchards, and peanut (Arachis hypogaea L.) fields, respectively, have developed herbicide resistance. Acetolactate synthase inhibitors, acetyl-CoA carboxylase inhibitors, and synthetic auxin herbicides are the most resistance-prone herbicides and are the most frequently used mechanisms of action, followed by 5-enolpyruvylshikimate-3-phosphate synthase inhibitors and protoporphyrinogen oxidase inhibitors. The lack of alternative herbicides to manage weeds that exhibit cross-resistance or multiple resistance (or both) is an emerging issue and poses one of the greatest threats challenging the crop production and food safety both in China and globally.


2018 ◽  
Vol 36 (0) ◽  
Author(s):  
M. DILIPKUMAR ◽  
N.R. BURGOS ◽  
T.S. CHUAH ◽  
S. ISMAIL

ABSTRACT: The Clearfield® rice production system is an effective management tool for weedy rice and other weeds in the direct-seeded rice culture. However, if farmers cultivating the Clearfield® rice disregard stewardship recommendations, the industry could face a problem of herbicide-resistant weedy rice which would occur through the selection of outcrosses. This study aimed to confirm imidazolinone-resistant weedy rice in Malaysia. The resistant weedy rice (R-WR) was found to be 67 fold more resistant to OnDuty® (premix of imazapic and imazapyr) than the susceptible weedy rice (S-WR) based on the GR50 values (rate that causes 50% inhibition of shoot growth). The Clearfield® rice cultivar was 32-fold more tolerant to OnDuty® than the S-WR. Furthermore, the R-WR was 54 and 89 fold more resistant to imazapic and imazapyr applied separately than the S-WR, respectively. The Clearfield® rice was 140- and 40-fold more tolerant to imazapic and imazapyr, respectively than the S-WR. The R-WR biotype was susceptible to non-selective herbicides glyphosate and glufosinate, as well as the selective graminicide quizalofop. Oxadiazon controlled the R-WR biotype, but pretilachlor was ineffective. The present study documented the first case of weedy rice that was cross-resistant to imazapic and imazapyr in Malaysian Clearfield® rice field.


2020 ◽  
Vol 21 (4) ◽  
pp. 1345
Author(s):  
Qianxin Huang ◽  
Jinyang Lv ◽  
Yanyan Sun ◽  
Hongmei Wang ◽  
Yuan Guo ◽  
...  

The use of herbicides is an effective and economic way to control weeds, but their availability for rapeseed is limited due to the shortage of herbicide-resistant cultivars in China. The single-point mutation in the acetohydroxyacid synthase (AHAS) gene can lead to AHAS-inhibiting herbicide resistance. In this study, the inheritance and molecular characterization of the tribenuron-methyl (TBM)-resistant rapeseed (Brassica napus L.) mutant, K5, are performed. Results indicated that TBM-resistance of K5 was controlled by one dominant allele at a single nuclear gene locus. The novel substitution of cytosine with thymine at position 544 in BnAHAS1 was identified in K5, leading to the alteration of proline with serine at position 182 in BnAHAS1. The TBM-resistance of K5 was approximately 100 times that of its wild-type ZS9, and K5 also showed cross-resistance to bensufuron-methyl and monosulfuron-ester sodium. The BnAHAS1544T transgenic Arabidopsis exhibited higher TBM-resistance than that of its wild-type, which confirmed that BnAHAS1544T was responsible for the herbicide resistance of K5. Simultaneously, an allele-specific marker was developed to quickly distinguish the heterozygous and homozygous mutated alleles BnAHAS1544T. In addition, a method for the fast screening of TBM-resistant plants at the cotyledon stage was developed. Our research identified and molecularly characterized one novel mutative AHAS allele in B. napus and laid a foundation for developing herbicide-resistant rapeseed cultivars.


Sign in / Sign up

Export Citation Format

Share Document